(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cons(mark(X1), X2) →+ mark(cons(X1, X2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, cons, fst, from, s, add, len, proper, top

They will be analysed ascendingly in the following order:
cons < active
fst < active
from < active
s < active
add < active
len < active
active < top
cons < proper
fst < proper
from < proper
s < proper
add < proper
len < proper
proper < top

(8) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
cons, active, fst, from, s, add, len, proper, top

They will be analysed ascendingly in the following order:
cons < active
fst < active
from < active
s < active
add < active
len < active
active < top
cons < proper
fst < proper
from < proper
s < proper
add < proper
len < proper
proper < top

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Induction Base:
cons(gen_0':nil:mark:ok3_0(+(1, 0)), gen_0':nil:mark:ok3_0(b))

Induction Step:
cons(gen_0':nil:mark:ok3_0(+(1, +(n5_0, 1))), gen_0':nil:mark:ok3_0(b)) →RΩ(1)
mark(cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
fst, active, from, s, add, len, proper, top

They will be analysed ascendingly in the following order:
fst < active
from < active
s < active
add < active
len < active
active < top
fst < proper
from < proper
s < proper
add < proper
len < proper
proper < top

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)

Induction Base:
fst(gen_0':nil:mark:ok3_0(+(1, 0)), gen_0':nil:mark:ok3_0(b))

Induction Step:
fst(gen_0':nil:mark:ok3_0(+(1, +(n986_0, 1))), gen_0':nil:mark:ok3_0(b)) →RΩ(1)
mark(fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
from, active, s, add, len, proper, top

They will be analysed ascendingly in the following order:
from < active
s < active
add < active
len < active
active < top
from < proper
s < proper
add < proper
len < proper
proper < top

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)

Induction Base:
from(gen_0':nil:mark:ok3_0(+(1, 0)))

Induction Step:
from(gen_0':nil:mark:ok3_0(+(1, +(n2470_0, 1)))) →RΩ(1)
mark(from(gen_0':nil:mark:ok3_0(+(1, n2470_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
s, active, add, len, proper, top

They will be analysed ascendingly in the following order:
s < active
add < active
len < active
active < top
s < proper
add < proper
len < proper
proper < top

(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol s.

(19) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
add, active, len, proper, top

They will be analysed ascendingly in the following order:
add < active
len < active
active < top
add < proper
len < proper
proper < top

(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)

Induction Base:
add(gen_0':nil:mark:ok3_0(+(1, 0)), gen_0':nil:mark:ok3_0(b))

Induction Step:
add(gen_0':nil:mark:ok3_0(+(1, +(n3165_0, 1))), gen_0':nil:mark:ok3_0(b)) →RΩ(1)
mark(add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(21) Complex Obligation (BEST)

(22) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
len, active, proper, top

They will be analysed ascendingly in the following order:
len < active
active < top
len < proper
proper < top

(23) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
len(gen_0':nil:mark:ok3_0(+(1, n5159_0))) → *4_0, rt ∈ Ω(n51590)

Induction Base:
len(gen_0':nil:mark:ok3_0(+(1, 0)))

Induction Step:
len(gen_0':nil:mark:ok3_0(+(1, +(n5159_0, 1)))) →RΩ(1)
mark(len(gen_0':nil:mark:ok3_0(+(1, n5159_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(24) Complex Obligation (BEST)

(25) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)
len(gen_0':nil:mark:ok3_0(+(1, n5159_0))) → *4_0, rt ∈ Ω(n51590)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(26) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(27) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)
len(gen_0':nil:mark:ok3_0(+(1, n5159_0))) → *4_0, rt ∈ Ω(n51590)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(28) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(29) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)
len(gen_0':nil:mark:ok3_0(+(1, n5159_0))) → *4_0, rt ∈ Ω(n51590)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

The following defined symbols remain to be analysed:
top

(30) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(31) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)
len(gen_0':nil:mark:ok3_0(+(1, n5159_0))) → *4_0, rt ∈ Ω(n51590)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

No more defined symbols left to analyse.

(32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(33) BOUNDS(n^1, INF)

(34) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)
len(gen_0':nil:mark:ok3_0(+(1, n5159_0))) → *4_0, rt ∈ Ω(n51590)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

No more defined symbols left to analyse.

(35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(36) BOUNDS(n^1, INF)

(37) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)
add(gen_0':nil:mark:ok3_0(+(1, n3165_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n31650)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

No more defined symbols left to analyse.

(38) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(39) BOUNDS(n^1, INF)

(40) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)
from(gen_0':nil:mark:ok3_0(+(1, n2470_0))) → *4_0, rt ∈ Ω(n24700)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

No more defined symbols left to analyse.

(41) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(42) BOUNDS(n^1, INF)

(43) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fst(gen_0':nil:mark:ok3_0(+(1, n986_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n9860)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

No more defined symbols left to analyse.

(44) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(45) BOUNDS(n^1, INF)

(46) Obligation:

TRS:
Rules:
active(fst(0', Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0')
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':nil:mark:ok → 0':nil:mark:ok
fst :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
0' :: 0':nil:mark:ok
mark :: 0':nil:mark:ok → 0':nil:mark:ok
nil :: 0':nil:mark:ok
s :: 0':nil:mark:ok → 0':nil:mark:ok
cons :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
from :: 0':nil:mark:ok → 0':nil:mark:ok
add :: 0':nil:mark:ok → 0':nil:mark:ok → 0':nil:mark:ok
len :: 0':nil:mark:ok → 0':nil:mark:ok
proper :: 0':nil:mark:ok → 0':nil:mark:ok
ok :: 0':nil:mark:ok → 0':nil:mark:ok
top :: 0':nil:mark:ok → top
hole_0':nil:mark:ok1_0 :: 0':nil:mark:ok
hole_top2_0 :: top
gen_0':nil:mark:ok3_0 :: Nat → 0':nil:mark:ok

Lemmas:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':nil:mark:ok3_0(0) ⇔ 0'
gen_0':nil:mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':nil:mark:ok3_0(x))

No more defined symbols left to analyse.

(47) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_0':nil:mark:ok3_0(+(1, n5_0)), gen_0':nil:mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(48) BOUNDS(n^1, INF)